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Abstract

Probability models on permutations associate a probability value to
each of the permutations on n items. This paper considers two popu-
lar probability models, the Mallows model and the Generalized Mallows
model. We describe methods for making inference, sampling and learning
such distributions, some of which are novel in the literature. This paper
also describes operations for permutations, with special attention in those
related with the Kendall and Cayley distances and the random generation
of permutations. These operations are of key importance for the efficient
computation of the operations on distributions. These algorithms are im-
plemented in the associated R package. Moreover, the internal code is
written in C++.

1 Introduction

Permutations are ordered sets of items that arise naturally in many domains,
such as genomics [Bader(2011)], cryptography, scheduling, computer vision [Ziegler et al.(2012)Ziegler, Christ
etc. The hottest topic is preference learning [Pre(2013)], since its commercial
applications have increased exponentially in the last years. However, most of
the theoretical foundation basis in use have been discussed in the literature for
years.

In order to deal with uncertainty probability distributions are often used.
Probability distributions over permutations assign a probability value to each
possible permutation of n items. Since the space of permutations grows facto-
rially with n (recall that the number of permutations of n items is n!) there is
a need of using probability models for medium-large values of n. However, the
particularities of permutation data does not allow us to adapt many concepts of
distributions over binary or real data to permutations. Consider, for example,
the notion of independence. For a distribution over binary variables, indepen-
dence between two variables implies that the first variable will have value 0 or
1 without regard to the value of the second variable. However, any two given
positions of the permutation can not have the same value by any chance, so the
classic notion of independence does not naturally translate to the permutation
domain. Therefore, permutation spaces need specific probability models and
concepts. However, the requirements for these models are very much the same,



that is, correct fitness to real data and the efficient computation of the most
common operations, such as making inference, learning and sampling. We think
that efficient algorithms for distributions over permutations can not be given
without considering the particular nature of permutations. Therefore, efficient
algorithms for dealing with permutations and its common operations are the
key to giving efficient algorithms for probability models over permutations.

We have consider two of the most popular probability models on permuta-
tions, the Mallows models (MM) and the Generalized Mallows model (GMM).
The MM is a distance-based ranking model in which the probability value of any
given permutation depends on its closeness to the mode permutation. It has a
simple definition relaying on just two parameters, the mode (central) permuta-
tion, og, which is the mode of the distribution, and the dispersion parameter, 6
which controls the sharpness of the distribution. The closeness between permu-
tations is given by one of the several metrics, being the most popular Kendall,
Cayley, Ulam, Hamming, Spearman’s-p and Spearman’s footrule. When the
distance for permutations is Kendall the MM also belongs to the family of multi-
stage models, is also known as the Mallows ¢-model and can also be motivated as
a paired comparison model, [Critchlow et al.(1991)Critchlow, Fligner, and Verducci].

The GMM is the most referenced among the extensions of the MM. The
GMM under the Kendall distance is a multistage algorithm also known as Mal-
lows ¢-component model. As the MM, the GMM is also an unimodal distri-
bution centered around oy. However, instead of one single spread parameter
as in the MM, the GMM makes use of n — 1 dispersion parameters. The idea
is to model situations in which the distribution is close to uniformity for some
positions of the permutation while being close to the mode for some others.

The two metrics for permutations considered in this paper -and package- are
the Kendall and the Cayley. The Kendall distance is related to the number of
inversions of a permutation. Cayley distance, on the other hand, is related to
the number of swaps and also to the cyclic structure of a permutation.

This package aims to be a compilation of functions on permutations, MM
and GMM. We include the most common operations for probability models
such as inference, sampling and learning. In order to have efficient algorithms,
the nature of the space of permutations on which the distribution acts must
be taken into consideration. Therefore, the basis of the package consists on
several functions for dealing with permutations with special attention on those
related with the Kendall and Cayley metrics and the random generation of
permutations. We distribute all these functions as an R package. In this way,
any researcher, even those not familiar with permutations or probability models,
can have an intuitive interface to operations some of which are very complex.
Also, most methods are coded in C++ internally, which runs much faster than
R code. All the code can be publicly accessed so any researcher can adapt it for
its specific purposes. Therefore, we think that this package can be attractive
for any kind of user, from the beginners in the fields of permutations and/or
probability models that want to get the intuition on how these functions behave
to those who want to extend the models or apply them to deal with real and
large sets of permutation data.

This is not the first package in the literature to deal with distributions over
permutations. The prefmode package models preference data in the form of
paired comparisons. In the particular case of the distance-based models there
exist two packages. The RMallows package uses a EM algorithm to fit the MM



under the Kendall distance to full or partial rankings, with and without ties.
The pmr on the other hand, implements the MM under the Kendall distance,
among other probability models. This package is aimed to help in the analysis
of preference data in tasks such as visualizing data and computation of descrip-
tive statistics. It also includes an application of the problem to label ranking
(classification).

This paper is organized as follows. Section 2 introduces the notation and
basic concepts on permutations. Several operations for dealing with this par-
ticular data type are introduced and explained since they will be the key to the
development of efficient operations for distributions over permutations. The
probability models, MM and GMM, are detailed in Section 3 while the next
two sections, 4 and 5 introduce several algorithms for sampling and learning
respectively. The usage of the package is shown as the problems are stated and
the algorithms are described.

2 Dealing with permutations

Permutations or rankings are ordered sets of the first n natural numbers. We
will denote permutations with Greek letters, mostly m and 0. The permutation
that places every item ¢ in position ¢ is called identity permutation and it is
denoted as e = [123...n]. For every permutation o its inverse o1 is defined
as 0(i) = j & o7 1(j) = i. Two permutations can be composed resulting in a
new permutation. The composition operation is defined as o7 (i) = o(n(4)). It
is worth noticing that co~! = e.

There are many distance metrics for permutations. Two are considered in
this package, Kendall and Cayley. For the next version of the package we plan to
include Ulam and Hamming metrics as well. All these metrics are right invariant,
what means that d(o,7) = d(o7,77y) for every permutation 7. Particularly
taking v = 7! and since 77! = e one can w.l.o.g. write d(o,7) = d(or 1, e).
For the sake of clarity the distance is denoted as a one parameter function
when the reference permutation is the identity, d(ocn~t,e) = d(or~!) what
simplifies the notation. The right invariant property implies that we can always
and w.l.o.g. take the identity permutation as the reference one. An example of
application of the invariance property appears when counting the permutations,
since the number of permutations at distance d from e equals the number of
permutations at distance d from o # e. Also, as we will later see, the distance
to the identity has more intuitive interpretations.

The Kendall distance dg (o, 7) counts the number of pairwise disagreements
between ¢ and w. It is used mainly in voting theory. When comparing a
permutation o to the identity, di(c) counts the number of inversions of o. It
is sometimes called bubble sort distance because di (o) equals the number of
adjacent swaps that the bubble sort algorithm performs to order the items in o
increasingly.

For permutation o, the bubble sort algorithm starts by checking item o(n—1)
and will swap it with item o(n) iff o(n — 1) > o(n). Then, it will check item
o(n—2) and order it respect the tail of the permutation, so o(n—2) < o(n—1) <
o(n). For this step, item o(n — 2) can be swapped 0, 1 or 2 times. In general,
we can define a vector V(o) = (Vi(0),...,V,—1(0)) such that Vj(o) equals
the number of times that the bubble sort algorithm swaps item o(j), where



0<Vj(6) <n—jand 1 < j < n. Note that V(o) is the number of items
smaller than o(j) in the tail of the permutation, and that it can be expressed
as follows:

Vi(o) = Z I{o(i) < o(5)) (1)

where I(-) denotes the identity function. Clearly, di(c) = Z;L;ll V;(o). More-
over, there is a bijection between each o € S,, and each possible V(o) vector.
Therefore, when dealing with the Kendall distance we can use the V(o) vector
as an alternative representation of o. The conversion from V(o) to o and vice
versa is supported in the current package and done in time O(n?).

The Cayley distance d.(o,7) counts the number of swaps (not necessary
adjacent) that have to be made to transform o into 7. When the reference
permutation is the identity, d.(c) equals n minus the number of cycles of o.
This distance is not natural for the voting domain, but has applications in
disciplines that range from cryptography to genetics. Therefore, we will not use
the name of ranking when dealing with this metric.

The same as the Kendall distance di (o) can be decomposed into the V(o)
vector, Cayley distance d.(o) can be decomposed into the vector X (o) of n —1
binary terms, X (o) = (Xi(0),...,Xn-1(0)) for 1 < j < n. Formally, it is
defined as follows:

X, (o) 0 if j is the largest item in its cycle in o
(o) =
’ 1 otherwise

Clearly, d.(o) = Z?;ll X,(0). However, there is not a bijection between
every possible X (o) vector and o € S,: although each o € S,, has one unique
X (o), the opposite is not necessarily true. The first algorithm for the random
generation of o given X (o) and assuming that every permutation consistent
with X (o) is equally probable, has been introduced in [?]. The conversion from
X (o) to one of the possible many ¢ and from o to X (o) is supported in the
current package and done in time O(n?).

In the present R package permutations are represented as vectors. Let us
enumerate related function which are included in the package. The function
is.permu(permu) indicates if the vector permu is a valid permutation. The
function identity.permutation(permu.length) returns the identity permutation
of permu.length items and permutations.of(permu.length) generates every pos-
sible permutation of permu.length items. Permutation inversion and compo-
sitions are supported by functions inverse.permu(permu) and compose(permu)
respectively. Basic operations for permutations are swapping two items, ad-
jacent or not, and inserting an item. These are done by the operations in-
version.at(permu, i), swap(permu, i, j) and insert(permu, i, j). It is pos-
sible to load a sample of permutations included in a file with the function
read.permu.file(path). The permutation matrix of a permutation or a sample
of them is obtained with permu.matrix(permu).

The present package implements functions to compute the Kendall and Cay-
ley distance between permutations, as distance(permul,permu2=identity.permu(length(permul)),
method="kendall’). The cycle decomposition to which the Cayley distance is
closely related is also supported. It is possible to obtain the cycle notation from a



given permutation and vice versa with the functions permutation2cycles(permu)
and cycles2permutation(cycles). It also implements a function to obtain the dis-
tance decompositions, permutation2decomposition(permu, method="kendall’),
that is, it can obtain the V(o) and X (o) for any o. Moreover, this package
implements the function for recovering a permutation o given V(o) or X (o), de-
composition2permutation(vec, method="kendall’). As we have already stated,
there exists one unique o for a given V(o). However, given X (o), this pack-
age will generate any of the possibly many permutations consistent with such
decomposition with equal probability using the procedure introduced in [?].

2.1 Counting and generating permutations

The random generation of permutations is a problem of interest in many disci-
plines It can be efficiently carried out with the well known Fisher-Yates shuffle
(also known as Knuth shuffle). A more restrictive version of the problem is that
of generating a permutation at distance d. This problem is closely related to
that of counting the number of permutations at distance d from the identity. In
this section we deal with these questions. In particular, we are interested in the
following problems:

e Given a metric, the number of items n and a distance d, how many per-
mutations are there at distance d from the id?

e Given a metric, the number of items n and a distance d, generate u.a.r. a
permutation at the given distance from the id.

We will approach both questions, counting and u.a.r. generation of permutations
at distance d, with recursive procedures.

The question of counting the number of permutations at distance d has been
largely studied for several metrics. In particular, there is an entry in the Online
encyclopedia of Integer Sequences (OEIS) for each of the metrics treated in this
package since there is no closed expression, neither for Kendall nor for Cayley
distances. The sequence for Kendall distance is given by Triangle of Mahonian
numbers, with code A008302 in the OEIS. One can find there eleven alternative
interpretations for the sequence, references, links and much more. Also, there
is a recurrence for its computation

1 n=1ANd=1
Sk(n,d) =<0 n=1ANd#1
Sk(n,d—1)+ Sp(n—1,d) — Sp(n—1,d — n) otherwise
(2)
The computational cost is O(n?).
The next question is the random generation of a permutation at distance
d from the identity. Note that this is equivalent to generating a permutation
with a given number of inversions, which, until now, was an open problem,
[Arndt(2010)]. We will now show our proposed algorithm to solve this question.
Recall that there is a bijection between every permutation o of n items
and every possible V(o). Every position 1 < j < n of vector V (o), Vj(o), is
restricted to have values 0 < (n — j). Moreover, di(o) = 27;11 Vj(o). The
problem of randomly generating a permutation at distance d from the identity
is thus equivalent to that of randomly generating a vector V(o) such that 0 <



Vi(o) < (n—j) for 1 < j < n. This induces the next alternative representation
for the problem:

Definition 1 Given n buckets of capacityn—1,n—2,n—3,...,1,0, distribute
d indistinguishable balls in such a way that any possible configuration is equally
probable.

Since, as shown in Equation 2, the number of permutations of n items at
Kendall distance d is Si(n,d), then, the number of V(o) vectors such that
Z;:ll Vi(o) = d is Sk(n,d). Equivalently, the number of ways to distribute d
indistinguishable balls into n buckets of capacity n —1,n —2,n—3,...,1,0 is
Sk(n,d).

We approach the problem in Definition 1 with a recursive procedure. Its base
case is d = 0 where nothing is done. In the general case, we introduce k balls in
the first bucket and then recursively solve the problem with the rest of the n—1
buckets and d — k balls. The main question is how to choose k if we want every
configuration to be equally probable. Note that if we introduce 1 ball in the first
bucket and try to recursively solve the problem with the remaining buckets and
balls, then we will have to choose one of the Si(n — 1,d — 1) configurations of
inserting the rest of the d—1 balls into the n—1 buckets. If we insert two balls in
the first bucket, we will have Si(n — 1,d — 2) possible configurations for the rest
of the buckets. In general, the insertion of k£ balls in the first bucket implies that
there will be Si(n—1,d— k) possible ways to introduce the d — k remaining balls
into the n — 1 remaining buckets. In other words, of the Si(n, d) total possible
configurations of distributing d balls in the n buckets, exactly Sk(n — 1,d — k)
of them will have k balls in the first bucket. Therefore, for a u.a.r. distribution
of the balls into the buckets, the probability of introducing k£ balls in the first
bucket is

Sk(n— 1,d—k‘)

probability of introducing & balls in the first bucket
Sk (Tl, d)

The analogy with the generation of the V(o) vector is quite trivial. Instead
of the n buckets of capacity n — 1,n —2,n—3,...,1,0 we have a vector V(o)
of n — 1 positions, each restricted to have values smaller than or equal to n —
1,n—2,n—3,...,1. The base case is the situation when d = 0. In this case
the output and input vectors are the same. Otherwise, we randomly choose k
where the probability of setting P(V;(o) = k) equals Sg(n —1,d — k)/Sk(n, d).
Then, we recursively solve the problem of inserting d —k balls into the remaining
positions of the vector, Va(0),...,Vy—1(0).

Regarding the computational complexity of the current algorithm, if the
values for Si(n,d) are given, the cost of generating a permutation at Kendall
distance d (or equivalently with d inversions) is O(n?).

Let us now show how to count and randomly generate permutations at a
given Cayley distance. Recall that the Cayley distance d.(c) can be expressed
as the number of cycles of o, in fact equals n minus the number of cycles of o.
Therefore, the number of permutations at Cayley distance d equals the number
of permutations with k = n—d cycles. Stirling numbers of the first kind S.(n, k)
count the number of permutations of n items with k cycles. They also appear
in the OEIS with code A008275 where the next recurrence for its computation



Algorithm 1: generate_V _vector(V,d)
Generates a V(o) vector where every possible vector is equally probable.

Input: V, empty distance decomposition vector; d, distance
Output: V(o) filled distance decomposition vector
if d = 0 then return V; /* base case */
else
for i = 1 to min={d,n — 1} do P(i) = %,
P(i) < Sk(n—1,d —i);
Randomly select k according to P(4);

V1 = k;
generate V _vector(V(2,...,n),d — k);
end

can be found:

1 n=0Ak=0
Se(n, k) =<0 n=0VvVk=0
Se(ln—1,k—1)—(n—1)%Se(n — 1,k) otherwise

The cost of computing the Stirling numbers of the first kind is O(n?).

We also include in this package a recursive process for the u.a.r. generation
of a permutation at Cayley distance d. The generation of a permutation of n
items and k cycles implies first, the recursive generation of a permutation of
the first n — 1 items and then, the insertion of item n. This is due to the fact
that the whole set of permutations of n items and k cycles can be split in two
groups: The group of permutations in which item n is in a cycle of length one
(o(n) = n) and the group of permutations in which item n is in a cycle of length
greater than one (o(n) # n). If the cardinality of those sets can be given, the
generation of the permutation can be efficiently performed.

Let us now show how the algorithm, whose pseudocode can be found in
2, performs. In its base case, k = 1. In this case the algorithm generates a
single cycle with the items in the permutation. In the general case, k > 1, the
algorithm will randomly choose one of the next options:

e Recursively generate a permutation of n — 1 items and k& — 1 cycles and
set o(n) = n, so item n is alone in its own cycle.

e Recursively generate a permutation of n — 1 items and k cycles. Then,
uwa.r. select 1 <i < n—1andset o(i) = n and o(n) = i. In this way,
items n is merged in a cycle of length greater than one.

The probability of selecting one or another will be proportional to the number
of permutations that can be built in each way. Note that there are S.(n,k)
permutations of n items and k cycles. This group can be split in two: the group
of permutations in which o(n) = n, which is built by taking the first option, and
the group of permutations in which o(n) # n, which is built by taking the second
option. By choosing the first option the algorithm generates a permutation of
n—1items and k—1 cycles. There are S¢(n—1, k—1) of this kind. On the other
hand, the second path implies generating one of the S.(n — 1, k) permutations



of n — 1 items and k cycles. Moreover, one of those n — 1 items is chosen to be
inserted in position n, so the number of permutations that can be generated in
the second path is S.(n — 1, k) x (n — 1). Therefore, the probability of selecting
the first path equals S.(n — 1,k)/S.(n, k) and the probability of selecting the
second path is 1 — S.(n —1,k)/Sc(n, k) = Sc(n — 1,k) x (n — 1)/Sc(n, k).

The computational cost of generating a random permutation at Cayley dis-
tance d from the identity given the Stirling numbers is O(n).

Algorithm 2: generate_permu(n, k)
This algorithm generates a permutation of n items with k cycles. Note
that every permutation of n items with k cycles is equally probable.

Input: n, num. of items; k, num. of cycles
Output: 7, permutation of n elements with k cycles
if k =1 then w=generate a cycle with the n elements; /* base case */

else
prob=S(n—1,k—1)/S(n,k);
with probability prob /* n stands in a cycle alone x/
m(1...n—1) = generate_permu(n — 1,k — 1);
m(n) =n;
end
otherwise /* n is in a cycle with other items x/

m(l...n—1) = generate_permu(n — 1, k);
ran = random number in the range [1,n — 1];
m(ran) = n;
m(n) = ran;

end

end
return ;

This package includes several functions for counting and generating per-
mutations. The random permutation generation is done with the function
runif.permu(permu.length). The generic count.permus.dist.d(permu.length, d,
method="kendall’) counts the number of permutations of permu.length items
at distance d when the particular metric is given by method. For the particular
case of the Cayley distance the function count.permus.k.cycles(permu.length, k)
is also helpful.

The generation of permutations at a given distance is supported via the func-
tion r.dist.d(permu.length, n, d, method="kendall’). Also, a for the particular
case of the Cayley distance there is a function r.permu.k.cycles(permu.length,
k).

3 Dealing with distributions over permutations

This section introduces the Mallows model and its most popular extension, the
Generalized Mallows model. Both of them are usually refer to as distance-based
model because both of them define a mode, g and the probability of any other
permutation depends on its distance to oy.



3.1 Mallows model

The Mallows model is one of first probability models for rankings or permu-
tations. However, it is still one of the most used models in both theoretical
and applicated papers. Just two parameters are required in its definition: the
central permutation oy and the spread (or dispersion) parameter 6. The central
permutation is the mode of the distribution, i.e. the permutation at which the
probability distribution takes it maximum value. The probability of any other
permutation decays exponentially as its distance to the central permutation in-
creases. The spread parameter controls how fast this fall happens. It can be
expressed as follows:

p(o) = exp(—0d(o,00))

(o)

where ¥(0) =Y exp(—0d(c,00)). Note that when the dispersion parameter ¢
is greater than 0, then oy is the mode. On the other hand, with § = 0 we obtain
the uniform distribution and when 6 < 0 then oq is the anti mode.

The computation of the normalization constant () is infeasible for medium
size values of n. The good news is that this constant can be factored for both
Kendall and Cayley distances, as explained in the next section.

A particular Mallows model is defined via the function dmm(mode, theta)
and the probability of a particular permutation under a given Mallows model is
obtained with the function proba(permu, distri, method="kendall’).

3.2 Generalized Mallows model

This extension of the MM tries to break the restriction that imposes every
permutation at the same distance to have the same probability value. Instead of
one single spread parameter, it requires the definition of n—1 spread parameters
0; for 1 < j < n, each affecting a particular position of the permutation. This
allows modeling a distribution with more emphasis on the consensus of certain
positions of the permutation while having more uncertainty in some others. This
model is more restrictive regarding the distance metric for permutations since
it requires the metric to be decomposed in n — 1 terms as follows:

n—1

d(o,00) =) 8005 ) 3)

Jj=1

For any distance that decomposes as the above equation, the GMM is defined

as follows: .

p(o) o [] exn(=0;5;(a05))
j=1

As shown in previous sections both Kendall and Cayley distances can be de-
composed as in Equation (3), see Equations (1) and (2). If {S1(7),...,Sh—1(7)}
are independent random variables when 7 is uniformly at random drawn from
the set of permutations of n items, the normalization constant can be factorized

n—1

as (0) = [ ;=1 ¥5(0;)-

When 7 is uniformly at random drawn from the set of permutations of n
items, {V1(n), ..., Vih—1(m)} are independent random variables, [Fligner and Verducci(1986)].



Therefore, the MM for the Kendall distance can be expressed as follows:

p(o) _ 1:[ exp(—HjVj(crao_ )) where w](ej) — 1-— exp(_oj(n _.j + 1))

¥;(6;) 1 — exp(—0;)

j=1

(4)

Also, {X1(m),..., Xp—1(m)} are independent Bernoulli random variables with

parameters P(X;(m) = 1) = (n—j)/(n—j+1) for j = 1,...,n — 1 when

7 is w.a.r. drawn from the set of permutations of n items, [Feller(1968)],

[Fligner and Verducci(1986)]. Therefore, when the metric for permutations is
the Cayley distance, the GMM is expressed as follows:

plo) = [ P where (0) = (0 esp(0) +1 0

By taking the moment generating function as in [Fligner and Verducci(1986)],
we can give the probability of each random variable for the GMM, what will be
very helpful to sample the distribution, as will be explained in the next section.
Under Kendall the probability of each V;(coy 1Y = r is given by:

_ exp(—0;r)
p(Vi(oogt) =) = — 4= (6)
e ¥ (6;)
The probability of each random variable under the Cayley distance, on the
other hand is as follows:

(n — j)exp(—0;)
¥;(05) ™)

Note that Equation 7 is a correction of that given in [Fligner and Verducci(1986)].

Since the MM is the particular case of the GMM where every 0; has equal
value, all these expressions can be also used for the MM.

A particular Generalized Mallows model is defined via the function dmm(mode,
theta) and the probability of a particular permutation under a given Generalized
Mallows model is obtained with the function proba(permu, distri, method="kendall’).

p(Xj(oog ") =1) =

4 Sampling

The present package implements three different algorithms for generating per-
mutations from a given distribution. The first two, Distances and Multistage,
sample directly from the distribution, while the last one, the Gibbs sampler,
samples a Markov chain whose stationary distribution is the distribution of
interest.

4.0.1 Distances sampling algorithm

The Distances sampling algorithm has been used for the generation of a MM
under Cayley metric [?]. Here we also use it for the generation of permutations
from a MM under Kendall. It can not be used to sample a GMM model since
it s based on the fact that every permutation at the same distance from the
central permutations has the same probability.

10



This sampling method proceeds as follows. Let the metric d(o,0p) range
between 0 and d_maz for permutations of n items. Also, let S(n,d) be the
number of permutations at distance d from the identity permutation'. Then,
the probability of a permutation at distance d is as follows:

S(n,d)exp(—0d)
¥(0)

Note that the normalization constant ¢(0) = >, exp(—0d(coy ")) can be ex-
pressed as the sum of d_max terms in the following way:

p(old(o,00) = d) = (8)

d_mazx

$(0) = > S(n,d)exp(—d)

d=0

Taking into consideration the previous expressions of the probability func-
tion, the process of simulating from the distribution can be done in three stages:

e Randomly select the distance at which the permutation will lay using
Equation (8). Note that the proposed equation is a function on the number
of permutations at each possible distance. We remind the reader that the
functions to count permutations at each Kendall or Cayley distance are
also implemented by the present package and explained in Section 2.1.

e Pick uniformly at random a permutation 7 at distance d from the identity
permutation e, i.e. d(w) = d. This step relays on the u.a.r. generation of a
permutation at a given distance. The random generation of permutations
at a given Kendall or Cayley distance is implemented in this package as
detailed in Section 2.1 of the current manuscript.

e In case oyp = e then 7 is output. Otherwise, Kendall’s and Cayley’s
invariance property lets us obtain o = woyq since d = d(w) = d(wog, 00) =
d(o,00).

The computational complexity of the first step is O(d_max) given the count of
the number of permutations at each distance. The second step, which implies
the random generation of a permutation at a given distance, is also O(d_max)
given the count of the number of permutations at each distance. Finally, the
last step is done in time O(n). Therefore, we can conclude that this is a quick
as well as precise algorithm for the simulation of the MM. However, it does not
work with the GMM. Also, as n increases so does the count of the number of
permutations at each distance in which the first two steps relay, being impossible
to store them with standard programming libraries for n > 150.

This sampling algorithm is supported by the function rmm(n, model, method="kendall’,
sampling.method="distances’) for the MM and rgmm(n, model, method="kendall’,
sampling.method="distances’) for the GMM.

4.0.2 Multistage sampling algorithm

This section exploits the fact that each term in which the distance d(o) decom-
poses is a random variable and that the probability of each random variable for

Irecall that every permutation has the same number of permutations at distance d.
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the GMM is given by Equations (6) and (7) for Kendall and Cayley distances
respectively. Since the MM is the particular case of the GMM in which every §;
is equal, this sampling algorithm can be used to generate permutations under
both MM and GMM.

Using this algorithm, the sampling process can be divided in three stages,
namely:

e Randomly generate a V(m) (respectively X(w)) vector by using Equa-
tion (6) for the Kendall distance (resp. Equation (7) for the Cayley dis-
tance).

e Using the techniques in Section 2 generate a permutation 7 consistent
with the given distance decomposition vector.

e In case oy = e 7 is output. Otherwise, we get the final permutation by
composing m with oy, obtaining ¢ = wog since m = 0000_1.

The computational complexity of the first step is O(n). The second step,
on the other hand, is harder to compute. The generation of a permutation
consistent with a given vector decomposition is detailed at the end of Section 2.

In that section it is shown that the cost is O(n?) for both Kendall and Cayley
distances.

As a summary we can state that this method is not as fast as the Distances
sampler of the previous section. However, it can generate from both MM and
GMM. Moreover, it can efficiently handle distributions on permutations of large
n.

This sampling algorithm is supported by the function rmm(n, model, method="kendall’,
sampling.method="multistage’) for the MM and rgmm(n, model, method="kendall’,
sampling.method="multistage’) for the GMM.

4.0.3 Gibbs sampling algorithm

The Gibbs sampler is a Markov Chain Montecarlo algorithm based on sampling
a Markov chain whose stationary distribution is the distribution of interest.
Therefore, it is an approximated algorithm for the simulation of the distribution.
We have adapted this algorithm to generate samples for both MM and GMM
under both Kendall and Cayley metrics.

The Gibbs sampler under each distance considers a particular neighborhood
for permutations. Under the Kendall distance the neighborhood of a permu-
tation is the set of permutations that result of randomly selecting a position
1 <4 < n and swapping (i) and o(i +1). On the other hand, for the Gibbs al-
gorithm under the Cayley distance the neighborhood of a permutation is the set
of permutations that result of randomly selecting two positions 1 <i < j < n
and swapping (i) and o(j).

The Gibbs algorithm proceeds as follows:

1. Generate uniformly at random a permutation o.
2. Select uniformly at random a permutation ¢’ in the neighborhood of o.

3. Let v = min{1,p(c’)/p(c)}. With probability v the algorithm accepts the
candidate permutation moving the chain to the candidate permutation,
o = o', and goes back to 2. Otherwise, it discards ¢’ and goes back to
step 2.
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The initial samples are discarded (burn-in period) until the Markov chain
approaches its stationary distribution and so samples from the chain are samples
from the distribution of interest. Then, the above process in repeated until the
algorithm generates a given number of permutations. Recall that so far we
assumed that the central permutation is the identity, e = [123...n]. If not, we
can center the sample around oy by composing each of the permutations 7 in
the sample with oy, obtaining 7woy.

Let us now focus on the computational complexity of the Gibbs sampler.
Under the Kendall distance, the new permutation ¢’ is obtained by swapping
two adjacent items from o, say ¢ and i + 1. Therefore, if o(i) > o(i + 1) then
o'(i) < o’(i + 1) and the new solution is accepted. On the other hand, if
o(i) < o(i+1), then o’/ (i) > ¢’(i + 1) and thus V;(0’) = V;(¢) + 1. In this case,
under the MM the probability of accepting the new solution ¢’ is exp(—6) while
under the GMM is as follows:

exp(—0; x vi11(0) — 011 *v;(0) + 0; % v;(0) + 011 * Vi 11(0))

The complexity of each iteration is thus O(n).

When dealing with the Cayley distance, on the other hand, a new permu-
tation o’ is built by swapping 2 items 1 < ¢ < j < n of o. If both items were
part of the same cycle in ¢ then after the swap the cycle has been split into
two new cycles and each swapped item is in a different cycle in ¢’. In this case
the distance decreases in one unit and the chain moves to the new permutation
o’. On the other hand, in case both items ¢ and j were in different cycles in
o then after the swap, both cycles are merged into a single one in ¢’. In this
case, the distance has been increased in one unit and the chain moves to ¢’ with
probability p(¢’)/p(c). Under the MM this ratio equals exp(—6). Under the
GMM, where the probability of a permutation is p(c) x — Z;:ll Hij(aaal)
the ratio equals exp(—0)) where k is the item such that Xj(coy') = 0 and
Xk(o’ao_l) = 1. Therefore, under the GMM it is not necessary to compute the
entire X (o'0 ) vector but just the Xy (c’cy ") of the items k in the cycles of the
swapped items. The computational complexity of generating each permutation
is thus O(n).

Summarizing, the Gibbs sampler can generate samples for both MM and
GMM under both Kendall and Cayley distances. Moreover, it is very fast,
performs an iteration in time O(n). However, we should emphasize the fact
that this an approximated sampling algorithm.

This sampling algorithm is supported by the function rmm(n, model, method="kendall’,
sampling.method="gibbs’) for the MM and rgmm(n, model, method="kendall’,
sampling.method="gibbs’) for the GMM.

5 Learning

In this section we deal with the maximum likelihood estimation of the param-
eters of the distribution given a sample of m i.i.d. permutations {o1, o9, ...,
om}. The log likelihood of the GMM is given by

Ln L({o1,09,...,0m}00,0) = ZLn p(osloo, 0)
s=1
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Although the MM is a particular case of the GMM in which every 6; has
the same value, the calculation of the maximum likelihood parameters are dif-
ferent for each model. Moreover, its expression differs regarding the distance on
the permutations considered. In this way, we will describe the maximum likeli-
hood estimation for each model and distance separately. Finally, we introduce
algorithms to fit the parameters of a given sample.

5.1 Mallows model
In the case of the MM the likelihood expression is given by the next equation.

Ln L({o1,09,...,0m}00,0) = Ln Hexp f/}d((go)’égo )

03 ooy —mIn (o) (9
s=1

By looking at Equation (9), we can see that calculating the value of o9 that
maximizes the equation is independent of #. Therefore the maximum likelihood
estimation problem for the MM can be posed as a two step process in which
first the central permutation is obtained and then the dispersion parameter for
the given 6 is calculated.

The maximum likelihood estimator (MLE) for the consensus permutation is
given by the next equation.

m m
Go = argmax E —d(os05 ") = argmin E d(osoyt)
oo go
s=1 =1

Problems consisting on finding the permutation that minimizes the sum of the
distances to the permutations in the sample are often called median problems.
Obviously, the solution will depend on whether the metric is Kendall or Cayley.
Moreover, the MLE for the dispersion parameter 6 will also differ for each
distance. For these reasons, we will deal with each distance separately.

5.1.1 Kendall distance

The problem of finding the permutation that minimizes the sum of the Kendall

distance to the permutations in a given sample appeared first in the voting do-

main. It is also referred to as consensus ranking or Kemeny rank aggregation

problem. It has been shown to be an NP-hard problem in [Bartholdi et al.(1989)Bartholdi, Tovey, and Trick].
Once the consensus permutation &g is known, the second and last stage of

the learning process of a MM concerns the estimation of the spread parameter.

The MLE for the dispersion parameter, é, is the # that satisfies the following

expression:

n— _i kexp(— ):0 (10)

exp(d) 1—exp(—
7 m A . . . . o .
where d = )", di(04,60)/m. This expression is obtained by deriving the

likelihood in Equation (9) and making it equal zero. Recall that the normaliza-
tion constant for the Kendall distance is given in Equation (4). Although there
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is no closed expression for the MLE for 6, the solution to this equation can be
easily calculated with numerical methods such as Newton-Raphson. This pack-
age implements a learning algorithm for the MM under the Kendall distance.
This algorithm and many others are discussed in Section 5.3.1.

5.1.2 Cayley distance

As stated, the learning problem is done in two separate stages. First, we look for
the mode of the distribution, o¢ and then calculate the dispersion parameter.

The problem of finding the median permutation under the Cayley distance
is also called swap median problem. Its computational complexity is an open
problem although it is supposed to be NP-complete. Note that the problem can
be posed as a function of the X (oo, ') vector as follows:

n—1

m
6o = argmin g d(os05') = argmin E X;
o g
R R

where X; = >"7" | X;(0s05")/m.

Suppose that the consensus permutation &g is known, the second and last
stage of the learning process of a MM concerns the estimation of the spread
parameter. The MLE for the dispersion parameter is the # that satisfies the
following expression:

J+ exp(0) m

n—1 . m ”—
Z J o Zs=1 d(asgo 1)
j=1

This expression is obtained by deriving the likelihood in Equation (9) and
making equal to zero and taking into account that the normalization constant
1(0) is given in Equation (5). Although there is no closed expression for 6, the
solution to this equation can be easily calculated with numerical methods such
as Newton-Raphson.

There is an heuristic and an exact algorithm for the MLE of the parameters
of the MM under the Cayley distance in Section 5.3.2.

5.2 Generalized Mallows model

In this section we deal with the expression of the likelihood under the GMM.
Recall that the GMM can consider any distance that can be decomposed in
n — 1 terms as expressed in Equation (3). In particular, for both Kendall and
Cayley metrics, the likelihood of the GMM model is given as follows:

m

Ln L({01,02,...,0m}|00,0) = Ln Hp(as)
s=1
n—1 m m n—1
= Z Z —Qij + Z Z Ln wj(ej)
j=11i=1 =1 j=1
n—1 B n—1 n—1
= —-m ZQJSJ' + Z Ln +;(0;) | = Z(ID
j=1 j=1 j=1
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where S; = Y- | Sj(0565")/m. Note that the learning process of the GMM can
not be divided in two separate stages, so an exact algorithm must look simulta-
neously for every parameter. The distance decomposition {S1(w),...,S,—1(7)}
is different for the Kendall and Cayley distances and thus, so will be the like-
lihood expression. Therefore, we will discuss the expression for each distance
separately.

5.2.1 Kendall distance

Recall that the Kendall distance decomposition is d (o) = Z;:ll V(o) as de-
fined in Equation (1). Also, the expression of the normalization constant ;(6,)
for the GMM under the Kendall distance is given in Equation (4). By combining
Equations (11) and (4) the following expression for the likelihood of the GMM

under the Kendall distance is obtained.

TM\

i (6;V; + Ln(1 — exp(—0,k)) — Ln(1 — exp(—0;)))

where V; = 37" V(0565 ")/m. For any given oy, the MLE for the spread
parameters, 6, is given by the equalling to zero the derivative of the previous
expression, and is as follows:

n—1 B k 1
2 (Vj T e (OF) 1 explBy) 1) =0 (12)

j=1

One can find in Section 5.3.1 how to use our package to approximately solve
this problem.

5.2.2 Cayley distance

The Cayley distance decomposition is d.(o) = 3277, ' X,(0) as defined in Equa-
tion (2). Also, Equation (5) expresses the normahzatlon constant ;(6,) for
the GMM under the Cayley metric. By combining Equations (11) and (5) we
obtain the expression for the likelihood of the GMM under the Cayley distance,
which is as follows.

n—1 n—1 _ (n—j)2 B X
jgcj :;—XjLn(n—j)—l—(n—j)g—&-T—i—XjLn JX —m (13)

where X; = 37" | X;(0565")/m

Assuming that the MLE for o( is known, the MLE for the dispersion pa-
rameters are computed by the equalling to zero the derivative of Equation (13).
In this case, there is a closed expression, which is as follows:

0; = Ln(n — j) — Ln(X;/(1 - X;)) (14)
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By combining Equations (13) and (14) we raise the following expression for
the GMM under the Cayley distance.

n—1

6o =argmax Ln L({01,02,...,0m}|00,0) = arg max E L;=
oo g0
=1

ST : o (n—j)? - Xj
argn;gxg[—XjLn(n—JH(n—J) I Xl e )

(15)

An exact learning algorithm would search the space of permutations looking
for the og that maximizes the above expression. Section 5.3.2 describes how to
use our proposed package to obtain an exact solution in an efficient way where
there is some consensus in the sample. We also provide an heuristic algorithm
for the situations where there is no consensus.

5.3 Learning algorithms
5.3.1 Kendall distance

As stated in Section 5.1.1, the MLE of the parameters 6o and 6 for MM under
the Kendall distance is done by, first, obtaining the consensus permutation &¢
and then, with Equation (10) obtaining 6 for the given &g. The main difficulty
is founded on the estimation of the consensus permutation.

The search for the consensus permutation g can be done in an exhaustive or
an heuristic way. A comprehensive comparison of more than a hundred methods
for the consensus ranking problem can be found in [Ali and Meila(2011)]. They
conclude that the well known Borda algorithm, [Borda(1781)], an heuristic algo-
rithm, offers a very good trade-off between accuracy and time. In this package
we include the Borda algorithm. Borda builds a central ranking &( by, first,
calculating the average at each position ¢ of the permutations o, 1 < s < m in
the sample, o(i) = Y.~ , 05(i), and second, sorting the items in 6 according to
a(i). It is a fast algorithm, it obtains a solution in time O(n). For the MM, this
algorithm is asymptotically optimal as shown in [Fligner and Verducci(1986)].

This package does not implement any exact algorithm for the consensus
ranking problem. The interested reader can find in [Ali and Meila(2011)] the
description and performance analysis of several exact and approximate algo-
rithms.

The problem of the exact MLE for the parameters of a GMM must be done
simultaneously for every parameter, as shown in Section 5.2.1. The first attempt
to give an exact solution for this problem was that in [Meila et al.(2007)Meila, Phadnis, Patterson, and Bilmes
However, a similar but much more efficient algorithm is proposed in [Mandhani and Meila(2009)].
The latter proposes an A* search method over the space of permutations with
a non-trivial admissible heuristic function.

Approximated solutions for the estimation of the MLE for the parameters of
a GMM, on the other hand, can be found in the packages prm and RMallows.

Summarizing, we do not consider the exact learning of the parameters neither
for MM nor form GMM in this package. We offer however an approximate
learning of the parameters of the distribution by splitting the problem into two
smaller problems:
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e Approximately estimating g with the Borda algorithm and then

e Estimating the dispersion parameters for the given 67 with Equation (10)
for the MM or Equation (12) for the GMM.

The MLE for the parameters of a MM and GMM under the Kendall distance
can be done with functions Imm (sample, method="kendall’) and lgmm(sample,
method="kendall’) respectively.

5.3.2 Cayley distance

This package includes a heuristic and an exhaustive algorithm to find the MLE
for the central permutation and the spread parameters for both MM and GMM.
In this section we briefly summarize the algorithms. They are introduced in [?]
and the improvements over those algorithms are detailed here.

We briefly summarize the exact algorithm here and refer the interested reader
to [?] where the complete details are given since the algorithms are the same
in both cases. The same process can be applied to the estimation of a MM
and a GMM. The exact algorithm is based on the fact that a certain kind of
partial solutions can be evaluated under both MM and GMM. The algorithm
explores the set of partial permutations of the first £ out of n positions in a
branch and bound strategy. We consider as candidate solutions o ! In this
way, the evaluation of these partial permutations o L of k items is a lower
bound on the evaluation of any complete permutation consistent with o Lof
k' > k items. Moreover, we can give a lower bound on the likelihood of the
rest of the permutation -which is unknown. In this way, the branch and bound
strategy results on an efficient searching procedure specially when there is some
consensus in the input sample.

The heuristic algorithm proceeds in two stages. The first stage consists on
the generation of an initial solution in a greedy way. Then, this initial solution
is improved with a metaheuristic search. The initial solution of the heuristic
algorithm starts from an empty vector and adds at each step an item to a
position of the solution. The process differs regarding we are solving a MM or
GMM.

Under the MM at each step the item 4 that appears most frequently at any
position j in the samples is chosen. Therefore, we set 0o(i) = j and proceed in
a stage-wise manner until the complete solution is built. Under the GMM on
the other hand, we start by start by choosing the most frequent item ¢ at the
first position of the inverse of the samples o' (1) and set o, ' (1) = . Then, the
algorithms selects the most frequent item i at the second position of the inverse
of the samples o !(2) and set o5 *(2) = 4. This approach is justified by the fact
that given a partial solution o, L of the first k positions we can exactly evaluate
X j for all j < k. Moreover, the Xj for low values of j have more weight in the
likelihood as one can see by looking to Equation (15).

Once a permutation is obtained, a Variable Neighborhood Search algorithm
is run trying to improve the solution until it gets stuck in a local optima for two
different given neighborhood systems, the Insert and the Swap.

The Insert neighborhood of a permutation o is the set of permutations {c/.}
that result of removing an item from its position and inserting it in other,
shifting any other item if necessary. For example, o/ = [12456378] is in the
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neighborhood of o = [12345678]. The Swap neighborhood of a given permuta-
tion, on the other hand is the set of permutations that result of swapping two
items. For example, o’ = [16345278] is in the neighborhood of o = [12345678].

The improvement from the algorithms in [?] comes from the evaluation of the
swap neighborhood. Note that there are n? neighbors of a given permutation
and therefore, the explicit evaluation of each of them is O(n?) can be inefficient.
Therefore, we propose the next algorithm for the selection of the best neighbor.

Let 7;; be involution of ¢ and j, i.e., the permutation that swaps items ¢
and j. Then ¢’ = o7;; is in the swap neighborhood of o. Moreover, if ¢ and j
are in the same cycle in o, then they will be in separate cycles in ¢’ and vice
versa. In general, if ¢ and j are in the same cycle of o0 ! then they will be
in different cycles in o0 1Tij and vice versa. Therefore, in order to obtain the
best neighbor of a particular solution oy, ! our proposed algorithm just computes
the number of permutations in the sample in which each pair of items are in the
same cycle in 0,0 1 denoted as cij- Then, select the pair of items ¢ and j for
which ¢;; is maximized. The number of cycles in o0 1T¢j decrease in m —2x*c;;
with respect to the number of cycles in 0'50'61. Therefore, if ¢;; > m/2 then,
00Ti; is closer to the sample than og. Summarizing, we have transformed the
explicit evaluation of the neighbors from O(n?) to O(n?).

The MLE for the parameters of a MM and GMM under the Cayley distance
can be done with functions lmm(sample, method="cayley’) and lgmm (sample,
method="cayley’) respectively.

6 Usage

jiecho=false; ;= library (PermutationsMallows) @
Esto esta en el manual-sweave.rnw

7 Conclusions

In this paper we present an R package for dealing with permutations. It includes
several functions for the generation and manipulation of permutations. We pay
special attention to those functions related to the Kendall and Cayley distances
and the process of counting and generating permutations at a given distance.
Moreover, two probability models are considered, the Mallows model and the
Generalized Mallows model. Both models can be associated with both Kendall
and Cayley distances. This package implements functions to generate from the
distributions as well as for the maximum likelihood estimation of the parameters
of the distribution.

A future version of this package will include the Hamming and Ulam metrics.

We expect this package to be helpful to every kind of user, from the noviced
in the field of permutations and/or probability models for permutation spaces
to the advanced users. Moreover, the internal code has been written in C++
for the maximum efficiency. Also, the code is public for any researcher which
wants to extend or improve it.
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